When they occur, azimuthal thermoacoustic oscillations can detrimentally affect the safe operation of gas turbines and aeroengines. We develop a real-time digital twin of azimuthal thermoacoustics of a hydrogen-based annular combustor. The digital twin seamlessly combines two sources of information about the system (i) a physics-based low-order model; and (ii) raw and sparse experimental data from microphones, which contain both aleatoric noise and turbulent fluctuations. First, we derive a low-order thermoacoustic model for azimuthal instabilities, which is deterministic. Second, we propose a real-time data assimilation framework to infer the acoustic pressure, the physical parameters, and the model and measurement biases simultaneously. This is the bias-regularized ensemble Kalman filter (r-EnKF), for which we find an analytical solution that solves the optimization problem. Third, we propose a reservoir computer, which infers both the model bias and measurement bias to close the assimilation equations. Fourth, we propose a real-time digital twin of the azimuthal thermoacoustic dynamics of a laboratory hydrogen-based annular combustor for a variety of equivalence ratios. We find that the real-time digital twin (i) autonomously predicts azimuthal dynamics, in contrast to bias-unregularized methods; (ii) uncovers the physical acoustic pressure from the raw data, i.e., it acts as a physics-based filter; (iii) is a time-varying parameter system, which generalizes existing models that have constant parameters, and capture only slow-varying variables. The digital twin generalizes to all equivalence ratios, which bridges the gap of existing models. This work opens new opportunities for real-time digital twinning of multi-physics problems.
翻译:暂无翻译