In real-world maintenance applications, deep generative models have shown promising performance in detecting anomalous events of entities from time-series signals collected from multiple sensors. Nevertheless, we outline two important challenges of leveraging such models for times-series anomaly detection: 1) developing effective and efficient reconstruction models and 2) exploiting the similarity and interrelation structures among the multivariate time series data channels. To address these challenges, in this paper we propose a stacking variational auto-encoder (VAE) model with graph neural networks for the effective and interpretable time-series anomaly detection. Specifically, we propose a stacking block-wise reconstruction framework with a weight-sharing scheme for the multivariate time series data with similarities among channels. Moreover, with a graph learning module, our model learns a sparse adjacency matrix to explicitly capture the stable interrelation structure information among multiple time series data channels for interpretable reconstruction of series patterns. Experimental results show that our proposed model outperforms the strong baselines on three public datasets with considerable improvements and meanwhile still maintains the training efficiency. Furthermore, we demonstrate that the intuitive stable structure learned by our model significantly improves the interpretability of our detection results.


翻译:在现实世界维护应用中,深层基因模型在从多个传感器收集的时间序列信号中发现实体异常事件方面显示出有良好的表现;然而,我们概述了利用这些模型发现时间序列异常现象的两大挑战:(1) 开发高效益和高效率重建模型,(2) 利用多时间序列数据渠道的相似性和相互关系结构;为应对这些挑战,我们在本文件中提议了一个堆叠式变异自动编码器模型,配有图表型神经网络,用于有效和可解释的时间序列异常现象探测。具体地说,我们提议了一个堆叠式轮挡式重建框架,配有多种变异时间序列数据的权重共享计划,与各渠道的相似性。此外,通过一个图表学习模块,我们的模型学习了一个分散的对称矩阵,以明确捕捉多个时间序列数据渠道之间稳定的相互关系信息,用于解释序列模式的重建。实验结果表明,我们提议的模型在三个公共数据集上超越了强的基线,同时大大改进了培训效率。此外,我们还表明,我们模型所学的直观稳定结构大大改进了我们探测结果的可判性。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
10+阅读 · 2017年11月22日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员