Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into basis functions that can be computed offline. These basis functions can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework.
翻译:移动初始值(MPs)是代表并生成模块轨迹的一个众所周知的概念。 MPs可以大致分为两类:(a) 基于动态的方法,从任何初始状态产生平滑的轨迹,例如动态移动初始值(DMPs),和(b) 获取运动较高排序统计数据的概率方法,例如,概率移动初始值(ProMPs),但是,迄今为止,没有两种方法能够统一,即能够从任意初始状态产生平稳的轨迹,同时捕捉更高顺序统计。在本文中,我们通过解决DMPs背后的运行轨迹(ODE)来统一两种方法的视角。我们把DMPs的昂贵在线数字整合转换到可以离线计算的基础功能。这些基础功能可以用来代表轨迹或轨迹模型分布,同时保持所有动态系统的特性。由于我们继承了两种方法的特性,我们把一个模型的运行周期性直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直线直径框架,然后获取更高的统计。 我们在本文本文中,我们把一个模型直径直径直径直径直径直径运行结构结构结构平结构结构结构结构结构结构结构结构结构结构的模型转换到一个不运行结构结构结构图。