We consider a high-dimensional sparse normal means model where the goal is to estimate the mean vector assuming the proportion of non-zero means is unknown. Using a Bayesian setting, we model the mean vector by a one-group global-local shrinkage prior belonging to a broad class of such priors that includes the horseshoe prior. We address some questions related to asymptotic properties of the resulting posterior distribution of the mean vector for the said class priors. Since the global shrinkage parameter plays a pivotal role in capturing the sparsity in the model, we consider two ways to model this parameter in this paper. Firstly, we consider this as an unknown fixed parameter and estimate it by an empirical Bayes estimate. In the second approach, we do a hierarchical Bayes treatment by assigning a suitable non-degenerate prior distribution to it. We first show that for the class of priors under study, the posterior distribution of the mean vector contracts around the true parameter at a near minimax rate when the empirical Bayes approach is used. Next, we prove that in the hierarchical Bayes approach, the corresponding Bayes estimate attains the minimax risk asymptotically under the squared error loss function. We also show that the posterior contracts around the true parameter at a near minimax rate. These results generalize those of van der Pas et al. (2014) \cite{van2014horseshoe}, (2017) \cite{van2017adaptive}, proved for the horseshoe prior. We have also studied in this work the asymptotic optimality of the horseshoe+ prior to this context. For horseshoe+ prior, we prove that using the empirical Bayes estimate of the global parameter, the corresponding Bayes estimate attains the near minimax risk asymptotically under the squared error loss function and also shows that the posterior distribution contracts around the true parameter at a near minimax rate.
翻译:我们考虑一个高维稀有的正常值模型, 目标是估算平均矢量, 假设非零值的比例未知。 我们使用贝叶西亚设置, 在属于包含前马蹄子在内的大类前端之前, 将平均矢量以一组全球- 本地缩进为模型模型。 我们处理与该类前端平均矢量分布的无线属性有关的一些问题。 由于全球缩水参数在捕捉模型中微缩度中起着关键作用, 我们考虑用两种方法来模拟这个参数。 首先, 我们认为这是一个未知的固定参数, 并用实证的巴耶斯估计它。 在第二种方法中, 我们用一个适当的非退化值处理。 我们首先显示, 在研究中的前一级, 平均矢量合同的后端分布在真实值上, 当使用实证的 Bayes 和近底值时, 我们证明, 在等级 Bayes 方法下, 近端的相对基流的基质参数估计在前空值中, 之前的比值 预估测结果显示, 。