We propose an unsupervised domain adaptation (UDA) approach for white matter hyperintensity (WMH) segmentation, which uses Self-Training with Uncertainty DEpendent Label refinement (STRUDEL). Self-training has recently been introduced as a highly effective method for UDA, which is based on self-generated pseudo labels. However, pseudo labels can be very noisy and therefore deteriorate model performance. We propose to predict the uncertainty of pseudo labels and integrate it in the training process with an uncertainty-guided loss function to highlight labels with high certainty. STRUDEL is further improved by incorporating the segmentation output of an existing method in the pseudo label generation that showed high robustness for WMH segmentation. In our experiments, we evaluate STRUDEL with a standard U-Net and a modified network with a higher receptive field. Our results on WMH segmentation across datasets demonstrate the significant improvement of STRUDEL with respect to standard self-training.


翻译:我们建议对白色物质高密度分解采用不受监督的域适应(UDA)方法,该方法使用不确定分解法进行自我培训,对不确定分解器进行精密的标签改进(STRUDEL),自我培训最近被引入为UDA的一种非常有效的方法,该方法以自我产生的假标签为基础,但假标签可能非常吵闹,因而使模型性能恶化。我们提议预测假标签的不确定性,并将假标签纳入培训过程,同时具有不确定性引导损失功能,以高度肯定地突出标签。STRUDEL通过将现有方法的分解输出纳入假标签生成中,显示出对WMH分解法的高度稳健度,从而进一步改进。在我们的实验中,我们用标准的U-Net和经过改造的网络对STRUDEL进行了评估,用较高的可接受域进行了修改。我们关于跨数据集的WMH分解结果显示STRUDEL在标准自我培训方面的重大改进。

1
下载
关闭预览

相关内容

【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
利用Uncertainty修正Domain Adaptation中的伪标签
极市平台
3+阅读 · 2020年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关VIP内容
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
利用Uncertainty修正Domain Adaptation中的伪标签
极市平台
3+阅读 · 2020年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员