Current approaches for 3D human motion synthesis generate high quality animations of digital humans performing a wide variety of actions and gestures. However, a notable technological gap exists in addressing the complex dynamics of multi human interactions within this paradigm. In this work, we present ReMoS, a denoising diffusion based model that synthesizes full body reactive motion of a person in a two person interaction scenario. Given the motion of one person, we employ a combined spatio temporal cross attention mechanism to synthesize the reactive body and hand motion of the second person, thereby completing the interactions between the two. We demonstrate ReMoS across challenging two person scenarios such as pair dancing, Ninjutsu, kickboxing, and acrobatics, where one persons movements have complex and diverse influences on the other. We also contribute the ReMoCap dataset for two person interactions containing full body and finger motions. We evaluate ReMoS through multiple quantitative metrics, qualitative visualizations, and a user study, and also indicate usability in interactive motion editing applications.
翻译:暂无翻译