We study the optimal provision of information for two natural performance measures of queuing systems: throughput and makespan. A set of parallel links is equipped with deterministic capacities and stochastic travel times where the latter depend on a realized scenario. A continuum of flow particles arrives at the system at a constant rate. A system operator knows the realization of the scenario and may (partially) reveal this information via a public signaling scheme to the flow particles. Upon arrival, the flow particles observe the signal issued by the system operator, form an updated belief about the realized scenario, and decide on a link to use. Inflow into a link exceeding the link's capacity builds up in a queue that increases the travel time on the link. Dynamic inflow rates are in a Bayesian dynamic equilibrium when the expected travel time along all links with positive inflow is equal at every point in time. We provide an additive polynomial time approximation scheme (PTAS) that approximates the optimal throughput by an arbitrary additive constant $\epsilon>0$. The algorithm solves a Langrangian dual of the signaling problem with the Ellipsoid method whose separation oracle is implemented by a cell decomposition technique. We also provide a multiplicative fully polynomial time approximation scheme (FPTAS) that does not rely on strong duality and, thus, allows to compute also the optimal signals. It uses a different cell decomposition technique together with a piece-wise convex under-estimator of the optimal value function. Finally, we consider the makespan of a Bayesian dynamic equilibrium which is defined as the last point in time when a total given value of flow leaves the system. Using a variational inequality argument, we show that full information revelation is a public signaling scheme that minimizes the makespan.
翻译:暂无翻译