In this paper, we propose a secure multiparty protocol for the feature selection problem. Let $D$ be the set of data, $F$ the set of features, and $C$ the set of classes, where the feature value $x(F_i)$ and the class $x(C)$ are given for each $x\in D$ and $F_i \in F$. For a triple $(D,F,C)$, the feature selection problem is to find a consistent and minimal subset $F' \subseteq F$, where `consistent' means that, for any $x,y\in D$, $x(C)=y(C)$ if $x(F_i)=y(F_i)$ for $F_i\in F'$, and `minimal' means that any proper subset of $F'$ is no longer consistent. The feature selection problem corresponds to finding a succinct description of $D$, and has various applications in the field of artificial intelligence. In this study, we extend this problem to privacy-preserving computation model for multiple users. We propose the first algorithm for the privacy-preserving feature selection problem based on the fully homomorphic encryption. When parties $A$ and $B$ possess their own personal data $D_A$ and $D_B$, they jointly compute the feature selection problem for the entire data set $D_A\cup D_B$ without revealing their privacy under the \em{semi-honest} model.


翻译:在本文中, 我们为特性选择问题提出一个安全的多党协议 。 特写选择问题在于找到一个一致和最小的子集 $F 。 特写选择问题在于找到一个一致和最小的子集 $F,\ subseteq F$, 其中“ 恒定” 是指任何美元, y\ in D$, $x( C)=y( C)$, 如果给美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。 对于3, 3, 特写选择问题在于找到一个简明的子, $, $, 和 esubsrequilegreal fireal developal ex ex ex ex ex ex ex ex ex exligicrealislational rolifral lif rom 。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年12月3日
Privacy-Preserving News Recommendation Model Learning
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员