The characterization of the maximally achievable entanglement in a given physical system is relevant, as entanglement is known to be a resource for various quantum information tasks. This holds especially for pure multiparticle quantum states, where the problem of maximal entanglement is not only of physical interest, but also closely related to fundamental mathematical problems in multilinear algebra and tensor analysis. We propose an algorithmic method to find maximally entangled states of several particles in terms of the geometric measure of entanglement. Besides identifying physically interesting states our results deliver insights to the problem of absolutely maximally entangled states; moreover, our methods can be generalized to identify maximally entangled subspaces.
翻译:对特定物理系统中最可能实现的纠缠的定性具有相关性,因为已知的纠缠是各种量子信息任务的一种资源。 这尤其适用于纯多粒量状态,其中,最大纠缠问题不仅涉及物理利益,而且与多线性代数和阵列分析中的基本数学问题密切相关。 我们提出了一个算法方法,以从纠缠的几何测量中找到若干颗粒的最大纠缠状态。 除了识别物理上有趣的状态外,我们的结果还给绝对最紧密的纠缠状态问题带来深刻的洞察力;此外,我们的方法可以普遍化,以识别最紧密的缠绕子空间。