Computation of circuit complexity has gained much attention in the Theoretical Physics community in recent times to gain insights about the chaotic features and random fluctuations of fields in the quantum regime. Recent studies of circuit complexity take inspiration from the geometric approach of Nielsen, which itself is based on the idea of optimal quantum control in which a cost function is introduced for the various possible path to determine the optimum circuit. In this paper, we study the relationship between the circuit complexity and Morse theory within the framework of algebraic topology using which we study circuit complexity in supersymmetric quantum field theory describing both simple and inverted harmonic oscillators up to higher orders of quantum corrections. The expression of circuit complexity in quantum regime would then be given by the Hessian of the Morse function in supersymmetric quantum field theory, and try to draw conclusion from their graphical behaviour. We also provide a technical proof of the well known universal connecting relation between quantum chaos and circuit complexity of the supersymmetric quantum field theories, using the general description of Morse theory.


翻译:近些年来,电路复杂度的计算在理论物理界引起了人们的极大关注,以便深入了解量子系统中字段的混乱特征和随机波动。最近对电路复杂度的研究从Nielsen的几何方法中得到启发,而Nielsen的几何方法本身基于最佳量子控制理念,即为确定最佳电路的各种可能路径引入成本函数。在本文中,我们研究了在代数地形学框架内的电路复杂度和摩斯理论之间的关系,我们用它来研究超对称量子场理论中的电路复杂度,用简单和倒置的电流振荡器来描述到更高的量子校正顺序。然后,摩西函数的赫西人将在超对称量子场理论中表达电路复杂度,并试图从他们的图形行为中得出结论。我们还根据对摩西理论的一般描述,对量子混和超对称量子场理论的电路复杂度提供了众所周知的普遍联系的技术证明。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
“弄假成真”:基于对抗学习的数据增广方法
科技导报
5+阅读 · 2018年10月8日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
“弄假成真”:基于对抗学习的数据增广方法
科技导报
5+阅读 · 2018年10月8日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员