In the claw detection problem we are given two functions $f:D\rightarrow R$ and $g:D\rightarrow R$ ($|D|=n$, $|R|=k$), and we have to determine if there is exist $x,y\in D$ such that $f(x)=g(y)$. We show that the quantum query complexity of this problem is between $\Omega\left(n^{1/2}k^{1/6}\right)$ and $O\left(n^{1/2+\varepsilon}k^{1/4}\right)$ when $2\leq k<n$.
翻译:在爪子探测问题中,我们被赋予两个函数 $f:D\rightrow R$和$g:D\rightrow R$ ($D ⁇ n$,$R ⁇ R$), 我们必须确定是否存在美元x, y}$D$, 这样一来美元( x) =g(y)$。 我们显示,这个问题的量子查询复杂度介于$\Omega\left(n ⁇ 1/2}k ⁇ 1/6 ⁇ right) $和$O\left(n ⁇ 1/2 ⁇ varepsilon}k ⁇ 1/4 ⁇ right) $之间, 当 2\leq k<n$时 。