We study continuous finite element dicretizations for one dimensional hyperbolic partial differential equations. The main contribution of the paper is to provide a fully discrete spectral analysis, which is used to suggest optimal values of the CFL number and of the stabilization parameters involved in different types of stabilization operators. In particular, we analyze the streamline-upwind Petrov-Galerkin (SUPG) stabilization technique, the continuous interior penalty (CIP) stabilization method and the local projection stabilization (LPS). Three different choices for the continuous finite element space are compared: Bernstein polynomials, Lagrangian polynomials on equispaced nodes, and Lagrangian polynomials on Gauss-Lobatto cubature nodes. For the last choice, we only consider inexact quadrature based on the formulas corresponding to the degrees of freedom of the element, which allows to obtain a fully diagonal mass matrix. We also compare different time stepping strategies, namely Runge-Kutta (RK), strong stability preserving RK (SSPRK) and deferred correction time integration methods. The latter allows to alleviate the computational cost as the mass matrix inversion is replaced by the high order correction iterations. To understand the effects of these choices, both time-continuous and fully discrete Fourier analysis are performed. These allow to compare all the different combinations in terms of accuracy and stability, as well as to provide suggestions for optimal values discretization parameters involved. The results are thoroughly verified numerically both on linear and non-linear problems, and error-CPU time curves are provided. Our final conclusions suggest that cubature elements combined with SSPRK and CIP or LPS stabilization are the most promising combinations.


翻译:我们研究一维双曲部分偏差方程式的连续限制元素分解。 本文的主要贡献是提供完全离散的光谱分析, 用于建议不同类型稳定操作器的 CFL 数和稳定参数的最佳值。 特别是, 我们分析精简的 Petrov- Galerkin (SUPG) 稳定技术、 持续的内部罚款( CIP) 稳定方法和本地投影稳定( LPS) 。 比较连续的有限元素空间有三种不同的选择 : Bernstein 多元数字、 equispace 参数的Lagrangian 多元光谱分析, 用于显示 Caus- Lobatto 肿瘤节点的 CLagrangia 多数值的最佳值值。 对于最后的选择, 我们只考虑基于与元素自由度相对的公式的内置变方形变形变形变形变形, 也比较不同的时间步变形战略, 即 Rung- Kutta (Rink) 、 坚固的 RK(SSPRK) 最稳的多的多的多数值分析, 和延迟的 Cal- 校正变形变形变形变形变形变形变形的C- 和变形变形变形变形变形的C- tral- tral- cal- tralal- 的计算, 和变形变形的变形的变形变形变形变形变形的计算法, 都显示为SLis- tral- tral- tral- 和变形变型的变形变形变形的变形的计算法, 和变式的变形法, 的变形变式的变形变形的变形变形法, 和变形变式的变形变式的变式的变形变形法, 和变式的变式的变形变形法, 都的变式的变式的变形变式的变形法, 和变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变形的变形的变形变形变形变形变形变式的变式的变式的变式的变式的变

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月24日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员