Keyword spotting (KWS) provides a critical user interface for many mobile and edge applications, including phones, wearables, and cars. As KWS systems are typically 'always on', maximizing both accuracy and power efficiency are central to their utility. In this work we use hardware aware training (HAT) to build new KWS neural networks based on the Legendre Memory Unit (LMU) that achieve state-of-the-art (SotA) accuracy and low parameter counts. This allows the neural network to run efficiently on standard hardware (212$\mu$W). We also characterize the power requirements of custom designed accelerator hardware that achieves SotA power efficiency of 8.79$\mu$W, beating general purpose low power hardware (a microcontroller) by 24x and special purpose ASICs by 16x.


翻译:关键字定位( KWS) 提供了许多移动和边缘应用程序的关键用户界面, 包括电话、 磨损器和汽车。 由于 KWS 系统一般都是“ 始终在”, 最大精确度和功率是其效用的核心。 在这项工作中, 我们使用硬件意识培训( HAT) 来建设新的 KWS神经网络, 其基础是传说记忆股( LMU), 实现最新技术( SotA) 精确度和低参数计数。 这使得神经网络能够高效运行标准硬件( 212 $\ mu$W ) 。 我们还将定制加速器硬件的功率要求定性为8. 79\ mu$W, 将通用低功率硬件( 微控制器) 由 24x 和 特殊 ASICT 击败 16x 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
4+阅读 · 2017年11月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
8+阅读 · 2018年6月19日
VIP会员
相关VIP内容
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
4+阅读 · 2017年11月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员