Keyword spotting (KWS) provides a critical user interface for many mobile and edge applications, including phones, wearables, and cars. As KWS systems are typically 'always on', maximizing both accuracy and power efficiency are central to their utility. In this work we use hardware aware training (HAT) to build new KWS neural networks based on the Legendre Memory Unit (LMU) that achieve state-of-the-art (SotA) accuracy and low parameter counts. This allows the neural network to run efficiently on standard hardware (212$\mu$W). We also characterize the power requirements of custom designed accelerator hardware that achieves SotA power efficiency of 8.79$\mu$W, beating general purpose low power hardware (a microcontroller) by 24x and special purpose ASICs by 16x.
翻译:关键字定位( KWS) 提供了许多移动和边缘应用程序的关键用户界面, 包括电话、 磨损器和汽车。 由于 KWS 系统一般都是“ 始终在”, 最大精确度和功率是其效用的核心。 在这项工作中, 我们使用硬件意识培训( HAT) 来建设新的 KWS神经网络, 其基础是传说记忆股( LMU), 实现最新技术( SotA) 精确度和低参数计数。 这使得神经网络能够高效运行标准硬件( 212 $\ mu$W ) 。 我们还将定制加速器硬件的功率要求定性为8. 79\ mu$W, 将通用低功率硬件( 微控制器) 由 24x 和 特殊 ASICT 击败 16x 。