LiDAR odometry is one of the essential parts of LiDAR simultaneous localization and mapping (SLAM). However, existing LiDAR odometry tends to match a new scan simply iteratively with previous fixed-pose scans, gradually accumulating errors. Furthermore, as an effective joint optimization mechanism, bundle adjustment (BA) cannot be directly introduced into real-time odometry due to the intensive computation of large-scale global landmarks. Therefore, this letter designs a new strategy named a landmark map for bundle adjustment odometry (LMBAO) in LiDAR SLAM to solve these problems. First, BA-based odometry is further developed with an active landmark maintenance strategy for a more accurate local registration and avoiding cumulative errors. Specifically, this paper keeps entire stable landmarks on the map instead of just their feature points in the sliding window and deletes the landmarks according to their active grade. Next, the sliding window length is reduced, and marginalization is performed to retain the scans outside the window but corresponding to active landmarks on the map, greatly simplifying the computation and improving the real-time properties. In addition, experiments on three challenging datasets show that our algorithm achieves real-time performance in outdoor driving and outperforms state-of-the-art LiDAR SLAM algorithms, including Lego-LOAM and VLOM.
翻译:LiDAR odology 是LIDAR 同步定位和映射( SLAM) 的重要部分之一。 但是,现有的 LiDAR odology 倾向于将新的扫描与先前的固定位置扫描相匹配, 逐渐积累错误。 此外, 作为一种有效的联合优化机制, 捆绑调整( BAB) 无法直接引入实时的观察仪, 因为大规模全球地标的计算十分密集。 因此, 这封信设计了一个新的战略, 名为LIDAR SLM 的捆绑调整测量( LMBAO) 的标志性地图, 以解决这些问题。 首先, 以 BA 为基础的ododology 正在进一步发展, 与一个积极的里程碑性维护战略相匹配, 以更精确的本地注册和避免累积错误。 具体地说, 本文将整个稳定的地标都保留在地图上, 而不是仅仅保留滑动窗口的特征, 并删除其活动等级的标志。 下一步, 滑动窗口长度, 并进行边缘化 以保留窗外的扫描,, 与地图上积极的标志相对对应,, 大大简化了计算, 并改进了实时属性。 此外,, 大大简化了 BAAWARM 和LM 的 的 。 在三个具有挑战性的数据- Ral- Ral- Ral- Ral- Ral- Ral- Ral- Ral- sal- sal- sal- sal- sal- dal- sal- sal- sal- sal- sal- salg- salg- salgalg- sal- saldaldalg- salg- salg- sald- sald- sal- sal- sal- sal- sal- salsgalsalsaldaldaldaldaldaldalsgalsgalsalsgalbalbalbalbaldalsalsalsalsalsalsalsalsaldaldaldaldaldaldaldaldaldalsalsalsaldaldaldaldaldalsalsalsalsalsalsalsalsal