We provide a method to identify system parameters of dynamical systems, called ID-ODE -- Inference by Differentiation and Observing Delay Embeddings. In this setting, we are given a dataset of trajectories from a dynamical system with system parameter labels. Our goal is to identify system parameters of new trajectories. The given trajectories may or may not encompass the full state of the system, and we may only observe a one-dimensional time series. In the latter case, we reconstruct the full state by using delay embeddings, and under sufficient conditions, Taken's Embedding Theorem assures us the reconstruction is diffeomorphic to the original. This allows our method to work on time series. Our method works by first learning the velocity operator (as given or reconstructed) with a neural network having both state and system parameters as variable inputs. Then on new trajectories we backpropagate prediction errors to the system parameter inputs giving us a gradient. We then use gradient descent to infer the correct system parameter. We demonstrate the efficacy of our approach on many numerical examples: the Lorenz system, Lorenz96, Lotka-Volterra Predator-Prey, and the Compound Double Pendulum. We also apply our algorithm on a real-world dataset: propulsion of the Hall-effect Thruster (HET).


翻译:我们提供一种方法来确定动态系统的系统参数,称为 ID-ODE -- 通过差异和观察延迟嵌入来推断系统参数。 在这种环境下, 我们从一个带有系统参数标签的动态系统中获得一组关于轨迹的数据。 我们的目标是确定新轨迹的系统参数。 给定的轨迹可能包含系统的完整状态, 我们可能只观察一个一维的时间序列。 在后一种情况下, 我们通过延迟嵌入来重建整个状态, 并在充分的条件下, 嵌入的理论保证了我们重建的系统与原始系统不相容。 这样我们就可以在时间序列上工作的方法。 我们的方法是先用一个神经网络来学习速度操作器( 被授予或重建的), 其状态和系统参数作为变量输入的完整状态。 然后是新的轨迹, 我们把预测误差带给我们一个梯度的参数输入一个梯度。 然后我们用梯度来推断正确的系统参数参数参数参数参数。 我们用梯度来显示我们的方法在时间序列上的工作效率。 我们用许多数字例子来显示我们的方法: Rodl- Chil- hall 系统: Wereblexal- holdstal

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Fully Adaptive Composition in Differential Privacy
Arxiv
0+阅读 · 2023年1月13日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员