This paper draws upon three themes in the bipedal control literature to achieve highly agile, terrain-aware locomotion. By terrain aware, we mean the robot can use information on terrain slope and friction cone as supplied by state-of-the-art mapping and trajectory planning algorithms. The process starts with abstracting from the full dynamics of a Cassie 3D bipedal robot, an exact low-dimensional representation of its centroidal dynamics, parameterized by angular momentum. Under a piecewise planar terrain assumption, and the elimination of terms for the angular momentum about the robot's center of mass, the centroidal dynamics become linear and has dimension four. Four-step-horizon model predictive control (MPC) of the centroidal dynamics provides step-to-step foot placement commands. Importantly, we also include the intra-step dynamics at 10 ms intervals so that realistic terrain-aware constraints on robot's evolution can be imposed in the MPC formulation. The output of the MPC is directly implemented on Cassie through the method of virtual constraints. In experiments, we validate the performance of our control strategy for the robot on inclined and stationary terrain, both indoors on a treadmill and outdoors on a hill.
翻译:本文基于双刃控制文献的三个主题, 以实现高度灵活、 地华地形的移动。 根据地形意识, 我们指的是机器人可以使用由最先进的绘图和轨迹规划算法提供的地形斜坡和摩擦锥体信息。 这一过程从Cassie 3D双脚机器人的全动态中抽取, 这是其半机器人动态的精确低维代表, 以角动力为参数。 在一块小巧的平面地形假设中, 以及消除机器人质量中心角动力的条件, 中间体动态成为线性, 并且具有四维。 四步方形的半体动态模型预测控制( MPC) 提供了中继脚的定位指令。 重要的是, 我们还包括了每10米的内位动态, 从而可以在MPC 的配制中对机器人的进化施加现实的地貌认知限制。 MPC的输出通过虚拟约束方法直接在Cassi上实施。 在实验中, 我们验证了我们移动和移动地面的机器人控制战略的绩效。