This work presents the coordinated motion control and obstacle-crossing problem for the four wheel-leg independent motor-driven robotic systems via a model predictive control (MPC) approach based on an event-triggering mechanism. The modeling of a wheel-leg robotic control system with a dynamic supporting polygon is organized. The system dynamic model is 3 degrees of freedom (DOF) ignoring the pitch, roll and vertical motions. The single wheel dynamic is analyzed considering the characteristics of motor-driven and the Burckhardt nonlinear tire model. As a result, an over-actuated predictive model is proposed with the motor torques as inputs and the system states as outputs. As the supporting polygon is only adjusted at certain conditions, an event-based triggering mechanism is designed to save hardware resources and energy. The MPC controller is evaluated on a virtual prototype as well as a physical prototype. The simulation results guide the parameter tuning for the controller implementation in the physical prototype. The experimental results on these two prototypes verify the efficiency of the proposed approach.
翻译:这项工作通过基于事件触发机制的模型预测控制(MPC)方法,为四轮腿独立的机动驱动机器人系统提出协调的动作控制和障碍交叉问题。 以动态支持多边形为主的轮腿机器人控制系统的模型是有组织的。 系统动态模型是3度的自由度(DOF), 忽略了投放、 滚动和垂直运动。 单轮动态是考虑到发动机驱动和非线性轮胎模型的特性而进行分析的。 因此, 与作为投入的发动机托盘一起提出了一个超活性预测模型, 系统则将之作为产出。 由于辅助多边形只在某些条件下进行调整, 一种基于事件的触发机制的设计是为了节省硬件和能源。 MPC控制器在虚拟原型和一个物理原型上进行了评价。 模拟结果指导了控制器在物理原型中执行的参数调整。 这两个原型的实验结果验证了拟议方法的效率。