We focus on the problem of developing energy efficient controllers for quadrupedal robots. Animals can actively switch gaits at different speeds to lower their energy consumption. In this paper, we devise a hierarchical learning framework, in which distinctive locomotion gaits and natural gait transitions emerge automatically with a simple reward of energy minimization. We use evolutionary strategies (ES) to train a high-level gait policy that specifies gait patterns of each foot, while the low-level convex MPC controller optimizes the motor commands so that the robot can walk at a desired velocity using that gait pattern. We test our learning framework on a quadruped robot and demonstrate automatic gait transitions, from walking to trotting and to fly-trotting, as the robot increases its speed. We show that the learned hierarchical controller consumes much less energy across a wide range of locomotion speed than baseline controllers.
翻译:我们集中关注为四重机器人开发节能控制器的问题。 动物可以以不同的速度积极交换音节, 降低它们的能源消耗。 在本文中, 我们设计了一个等级学习框架, 通过简单的能源最小化奖励自动出现独特的运动曲目和自然步态过渡。 我们使用进化策略来训练一个高层次的音轨政策, 具体规定每只脚的音轨模式, 而低层次的 convex MPC 控制器则优化运动命令, 以使机器人能够以预期的速度使用这种动作模式行走。 我们用一个四重机器人测试我们的学习框架, 并演示自动步步态过渡, 从行走到步走和飞步, 随着机器人加快速度。 我们显示, 学习的上层控制器比基线控制器消耗的能量要少得多。