Similar to surprising performance in the standard deep learning, deep nets trained by adversarial training also generalize well for $\textit{unseen clean data (natural data)}$. However, despite adversarial training can achieve low robust training error, there exists a significant $\textit{robust generalization gap}$. We call this phenomenon the $\textit{Clean Generalization and Robust Overfitting (CGRO)}$. In this work, we study the CGRO phenomenon in adversarial training from two views: $\textit{representation complexity}$ and $\textit{training dynamics}$. Specifically, we consider a binary classification setting with $N$ separated training data points. $\textit{First}$, we prove that, based on the assumption that we assume there is $\operatorname{poly}(D)$-size clean classifier (where $D$ is the data dimension), ReLU net with only $O(N D)$ extra parameters is able to leverages robust memorization to achieve the CGRO, while robust classifier still requires exponential representation complexity in worst case. $\textit{Next}$, we focus on a structured-data case to analyze training dynamics, where we train a two-layer convolutional network with $O(N D)$ width against adversarial perturbation. We then show that a three-stage phase transition occurs during learning process and the network provably converges to robust memorization regime, which thereby results in the CGRO. $\textit{Besides}$, we also empirically verify our theoretical analysis by experiments in real-image recognition datasets.
翻译:暂无翻译