Previous transfer methods for anomaly detection generally assume the availability of labeled data in source or target domains. However, such an assumption is not valid in most real applications where large-scale labeled data are too expensive. Therefore, this paper proposes an importance weighted adversarial autoencoder-based method to transfer anomaly detection knowledge in an unsupervised manner, particularly for a rarely studied scenario where a target domain has no labeled normal/abnormal data while only normal data from a related source domain exist. Specifically, the method learns to align the distributions of normal data in both source and target domains, but leave the distribution of abnormal data in the target domain unchanged. In this way, an obvious gap can be produced between the distributions of normal and abnormal data in the target domain, therefore enabling the anomaly detection in the domain. Extensive experiments on multiple synthetic datasets and the UCSD benchmark demonstrate the effectiveness of our approach. The code is available at https://github.com/fancangning/anomaly_detection_transfer.
翻译:先前的异常检测传输方法通常假定在源域或目标域内提供标签数据。然而,在大规模标签数据过于昂贵的大多数实际应用中,这种假设并不有效。因此,本文件提出一种重要的加权对称自动编码器法,以不受监督的方式传输异常检测知识,特别是对于很少研究的假设情况,即目标域没有标记正常/异常数据,而只有相关源域的正常数据存在。具体地说,该方法学会在源域和目标域内统一正常数据的分布,但目标域内异常数据的分布保持不变。这样,在目标域内正常数据的分布和异常数据的分布之间可以产生明显的差距,从而使得能够发现异常。多套合成数据集的广泛实验和中央数据委员会基准表明我们的方法的有效性。该代码可在https://github.com/fancangning/anomaly_detetopretion_traction_traction上查阅。