Previous transfer methods for anomaly detection generally assume the availability of labeled data in source or target domains. However, such an assumption is not valid in most real applications where large-scale labeled data are too expensive. Therefore, this paper proposes an importance weighted adversarial autoencoder-based method to transfer anomaly detection knowledge in an unsupervised manner, particularly for a rarely studied scenario where a target domain has no labeled normal/abnormal data while only normal data from a related source domain exist. Specifically, the method learns to align the distributions of normal data in both source and target domains, but leave the distribution of abnormal data in the target domain unchanged. In this way, an obvious gap can be produced between the distributions of normal and abnormal data in the target domain, therefore enabling the anomaly detection in the domain. Extensive experiments on multiple synthetic datasets and the UCSD benchmark demonstrate the effectiveness of our approach. The code is available at https://github.com/fancangning/anomaly_detection_transfer.


翻译:先前的异常检测传输方法通常假定在源域或目标域内提供标签数据。然而,在大规模标签数据过于昂贵的大多数实际应用中,这种假设并不有效。因此,本文件提出一种重要的加权对称自动编码器法,以不受监督的方式传输异常检测知识,特别是对于很少研究的假设情况,即目标域没有标记正常/异常数据,而只有相关源域的正常数据存在。具体地说,该方法学会在源域和目标域内统一正常数据的分布,但目标域内异常数据的分布保持不变。这样,在目标域内正常数据的分布和异常数据的分布之间可以产生明显的差距,从而使得能够发现异常。多套合成数据集的广泛实验和中央数据委员会基准表明我们的方法的有效性。该代码可在https://github.com/fancangning/anomaly_detetopretion_traction_traction上查阅。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Graph Disentanglement
Arxiv
0+阅读 · 2021年7月6日
VIP会员
相关VIP内容
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员