We describe and analyze a quasi-Trefftz DG method for solving boundary value problems for the homogeneous diffusion-advection-reaction equation with piecewise-smooth coefficients. Trefftz schemes are high-order Galerkin methods whose discrete functions are elementwise exact solutions of the underlying PDE. Trefftz basis functions can be computed for many PDEs that are linear, homogeneous and with piecewise-constant coefficients. However, if the equation has varying coefficients, in general, exact solutions are unavailable, hence the construction of discrete Trefftz spaces is impossible. Quasi-Trefftz methods have been introduced to overcome this limitation, relying on discrete spaces of functions that are elementwise "approximate solutions" of the PDE. A space-time quasi-Trefftz DG method for the acoustic wave equation with smoothly varying coefficients has recently been studied; since it has shown excellent results, we propose a related method that can be applied to second-order elliptic equations. The DG weak formulation is derived using an interior penalty parameter and the upwind numerical fluxes. We choose polynomial quasi-Trefftz basis functions, whose coefficients can be computed with a simple algorithm based on the Taylor expansion of the PDE's coefficients. The main advantage of Trefftz and quasi-Trefftz schemes over more classical ones is the higher accuracy for comparable numbers of degrees of freedom. We prove that the dimension of the quasi-Trefftz space is smaller than the dimension of the full polynomial space of the same degree and that yields the same optimal convergence rates. The quasi-Trefftz DG method is well-posed, consistent and stable and we prove its high-order convergence. We present some numerical experiments in two dimensions that show excellent properties in terms of approximation and convergence rate.
翻译:暂无翻译