Video compression plays a crucial role in video streaming and classification systems by maximizing the end-user quality of experience (QoE) at a given bandwidth budget. In this paper, we conduct the first systematic study for adversarial attacks on deep learning-based video compression and downstream classification systems. Our attack framework, dubbed RoVISQ, manipulates the Rate-Distortion (R-D) relationship of a video compression model to achieve one or both of the following goals: (1) increasing the network bandwidth, (2) degrading the video quality for end-users. We further devise new objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression. We empirically show the resilience of RoVISQ attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets show RoVISQ attacks deteriorate peak signal-to-noise ratio by up to 5.6dB and the bit-rate by up to 2.4 times while achieving over 90% attack success rate on a downstream classifier.
翻译:视频压缩在视频流流和分类系统中发挥着关键作用,在特定带宽预算中最大限度地提高最终用户经验质量(QoE),从而在视频流和分类系统中最大限度地提高最终用户经验质量(QoE),从而在视频流流和分类系统中发挥关键作用。在本文中,我们首次对深学习视频压缩和下游分类系统的对抗性攻击进行系统研究。我们的攻击框架(称为RoVISQ)操纵视频压缩模型的速率扭曲关系,以实现以下一个或两个目标:(1) 提高网络带宽,(2) 降低终端用户的视频质量。我们进一步为下游视频分类服务设计了定向和非定向攻击的新目标。最后,我们设计了一种输入性反动性干扰实时破坏视频压缩和分类系统。与先前提议的对视频分类的攻击不同,我们的对抗性攻击是第一个能够抵御压缩的。我们用实验性地展示了RVISQ对各种防御的抵御力,例如,对抗性培训、视频去动和JPEG压缩。我们在各种视频数据集上的广泛实验结果显示RoVISQ攻击将峰值推向上峰值,同时将信号-tonoisleasion laeving laever laeving laever lavice a y a laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx