Remote sensor image object detection is an important technology for Earth observation, and is used in various tasks such as forest fire monitoring and ocean monitoring. Image object detection technology, despite the significant developments, is struggling to handle remote sensor images and small-scale objects, due to the limited pixels of small objects. Numerous existing studies have demonstrated that an effective way to promote small object detection is to introduce the spatial context. Meanwhile, recent researches for image classification have shown that spectral convolution operations can perceive long-term spatial dependence more efficiently in the frequency domain than spatial domain. Inspired by this observation, we propose a Frequency-aware Feature Pyramid Framework (FFPF) for remote sensing object detection, which consists of a novel Frequency-aware ResNet (F-ResNet) and a Bilateral Spectral-aware Feature Pyramid Network (BS-FPN). Specifically, the F-ResNet is proposed to perceive the spectral context information by plugging the frequency domain convolution into each stage of the backbone, extracting richer features of small objects. To the best of our knowledge, this is the first work to introduce frequency-domain convolution into remote sensing object detection task. In addition, the BSFPN is designed to use a bilateral sampling strategy and skipping connection to better model the association of object features at different scales, towards unleashing the potential of the spectral context information from F-ResNet. Extensive experiments are conducted for object detection in the optical remote sensing image dataset (DIOR and DOTA). The experimental results demonstrate the excellent performance of our method. It achieves an average accuracy (mAP) without any tricks.


翻译:遥感图像天体探测是地球观测的一个重要技术,用于森林火灾监测和海洋监测等各种任务。图像天体探测技术尽管有了重大发展,但由于小物体的像素有限,却在努力处理遥感传感器图像和小型物体。许多现有研究表明,促进小型物体探测的有效方法是引入空间环境。与此同时,最近的图像分类研究显示,光谱谱变异操作可以在频率领域比空间领域更高效地看到长期空间依赖性。受这一观测的启发,我们建议建立一个具有频度的地貌图象仪框架(FFPF),用于遥感天体探测,该技术包括新型的频谱感光学图像和小型物体网络(F-ResNet)和双边的光谱-观测地貌图图质网络(BS-FPN),建议F-ResNet通过将频率域域域图变异,提取较丰富的小物体特性。我们最了解的是,这是在遥感天体探测器中引入频率-地貌变异图像的首个实验,在遥感轨道上,在遥感天体变频光学上将光学变光学定位中进行一个更深的模型,在遥感轨道上,在BSDRPLSD任务探测中进行一个更深的定位上进行一个更深的比级变深的图像比级变。

0
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员