For the task of change detection (CD) in remote sensing images, deep convolution neural networks (CNNs)-based methods have recently aggregated transformer modules to improve the capability of global feature extraction. However, they suffer degraded CD performance on small changed areas due to the simple single-scale integration of deep CNNs and transformer modules. To address this issue, we propose a hybrid network based on multi-scale CNN-transformer structure, termed MCTNet, where the multi-scale global and local information are exploited to enhance the robustness of the CD performance on changed areas with different sizes. Especially, we design the ConvTrans block to adaptively aggregate global features from transformer modules and local features from CNN layers, which provides abundant global-local features with different scales. Experimental results demonstrate that our MCTNet achieves better detection performance than existing state-of-the-art CD methods.
翻译:为了完成遥感图像的变化探测任务,基于深演神经网络(CNNs)的深层神经网络(CCD)方法最近汇总了变压器模块,以提高全球地貌提取能力;然而,由于深有CNN和变压器模块的简单单一规模整合,这些变压器在小面积变化地区的性能受损;为解决这一问题,我们提议建立一个以多级CNN- Transfer结构为基础的混合网络,称为MCTNet,其中利用全球和地方的多尺度信息加强CD在不同大小变化地区的性能;特别是,我们设计ConvTrans块,从有线电视网层的变压器模块和本地地物中,以适应性综合的全球特征,这些特征以不同规模提供丰富的全球-地方特征;实验结果表明,我们的MCTNet比现有最先进的CD方法更能取得更好的探测性能。