A quantum walk places a traverser into a superposition of both graph location and traversal "spin." The walk is defined by an initial condition, an evolution determined by a unitary coin/shift-operator, and a measurement based on the sampling of the probability distribution generated from the quantum wavefunction. Simple quantum walks are studied analytically, but for large graph structures with complex topologies, numerical solutions are typically required. For the quantum theorist, the Gremlin graph traversal machine and language can be used for the numerical analysis of quantum walks on such structures. Additionally, for the graph theorist, the adoption of quantum walk principles can transform what are currently side-effect laden traversals into pure, stateless functional flows. This is true even when the constraints of quantum mechanics are not fully respected (e.g. reversible and unitary evolution). In sum, Gremlin allows both types of theorist to leverage each other's constructs for the advancement of their respective disciplines.
翻译:量子漫步将量子漫步置于图形位置和曲折“ 螺旋” 的叠加位置。 步态由初始条件定义, 由单一硬币/移动操作器决定的进化, 以及基于量子波函数产生的概率分布抽样的测量。 简单量子漫步经过分析研究, 但对于具有复杂地形的大型图表结构, 通常需要数字解决方案。 对于量子理论家来说, Gremlin 图形漫游机器和语言可用于对此类结构的量子漫步进行数值分析。 此外, 对于图形理论家来说, 量子漫步原则的采用可以将当前副作用的拉动性曲变成纯净、 无国籍的功能流。 即使量子力的制约没有得到充分尊重( 例如可逆和统一的进化 ), 也确实如此。 总之, Gremlin 允许两种类型的理论家利用彼此的构造来推进各自的学科。