We consider the best-of-both-worlds problem for learning an episodic Markov Decision Process through $T$ episodes, with the goal of achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ regret when the losses are adversarial and simultaneously $\mathcal{O}(\text{polylog}(T))$ regret when the losses are (almost) stochastic. Recent work by [Jin and Luo, 2020] achieves this goal when the fixed transition is known, and leaves the case of unknown transition as a major open question. In this work, we resolve this open problem by using the same Follow-the-Regularized-Leader ($\text{FTRL}$) framework together with a set of new techniques. Specifically, we first propose a loss-shifting trick in the $\text{FTRL}$ analysis, which greatly simplifies the approach of [Jin and Luo, 2020] and already improves their results for the known transition case. Then, we extend this idea to the unknown transition case and develop a novel analysis which upper bounds the transition estimation error by (a fraction of) the regret itself in the stochastic setting, a key property to ensure $\mathcal{O}(\text{polylog}(T))$ regret.


翻译:我们认为,如果损失是对抗性的,同时是负负负的,那么,当损失(几乎)是(text{polylog}(T)美元时,我们就会感到最遗憾。 [Jin和Luo,2020年]最近的工作大大简化了[Jin和Luo,2020年]的做法,并且已经改进了它们对于已知过渡案的结果。在这项工作中,我们将这一想法扩展至未知的过渡案,然后,我们将这一想法推广到这个未知的过渡案,然后,通过确定最后的错误,将最后的转变案推到最后的错误,从而确定最后的错误。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月10日
Arxiv
0+阅读 · 2021年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员