Bayesian persuasion is a model for understanding strategic information revelation: an agent with an informational advantage, called a sender, strategically discloses information by sending signals to another agent, called a receiver. In algorithmic Bayesian persuasion, we are interested in efficiently designing the sender's signaling schemes that lead the receiver to take action in favor of the sender. This paper studies algorithmic Bayesian-persuasion settings where the receiver's feasible actions are specified by combinatorial constraints, e.g., matroids or paths in graphs. We first show that constant-factor approximation is NP-hard even in some special cases of matroids or paths. We then propose a polynomial-time algorithm for general matroids by assuming the number of states of nature to be a constant. We finally consider a relaxed notion of persuasiveness, called CCE-persuasiveness, and present a sufficient condition for polynomial-time approximability.


翻译:贝叶斯说服是理解战略信息披露的模型:一个信息优势的代理人,称为发件人,通过向另一个代理人发送信号,战略上披露信息,称为接收人。在巴伊西亚算法中,我们有兴趣有效地设计发件人的信号计划,引导接收人采取行动支持发件人。本文研究巴伊西亚预测设置的算法,接收人可行的行动是通过组合约束(例如,类固醇或图中路径)指定的。我们首先显示,即使在一些特殊情况下,即使是在类固醇或路径,常态接近也是硬的。然后我们假设自然状态的数量不变,为一般类固醇提议一个多时算法。我们最终认为,一种较宽松的说服性概念,称为CE-说服力,并提出了多营养-时间相适应性的充分条件。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
58+阅读 · 2021年4月12日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
凸优化及无约束最优化
AINLP
3+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
凸优化及无约束最优化
AINLP
3+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员