We develop a one-Newton-step-per-horizon, online, lag-$L$, model predictive control (MPC) algorithm for solving discrete-time, equality-constrained, nonlinear dynamic programs. Based on recent sensitivity analysis results for the target problems class, we prove that the approach exhibits a behavior that we call superconvergence; that is, the tracking error with respect to the full horizon solution is not only stable for successive horizon shifts, but also decreases with increasing shift order to a minimum value that decays exponentially in the length of the receding horizon. The key analytical step is the decomposition of the one-step error recursion of our algorithm into algorithmic error and perturbation error. We show that the perturbation error decays exponentially with the lag between two consecutive receding horizons, while~the algorithmic error, determined by Newton's method, achieves quadratic convergence instead. Overall this approach induces our local exponential convergence result in terms of the receding horizon length for suitable values of $L$. Numerical experiments validate our theoretical findings.
翻译:我们开发了一种用于解决离散时间、平等限制和非线性动态程序的模式预测(MPC)算法。根据最近对目标问题类的敏感度分析结果,我们证明该方法显示出一种我们称之为超趋同的行为;也就是说,全地平线解决方案的跟踪错误不仅对连续的地平线变化来说是稳定的,而且随着不断递增的变换顺序而降低到一个最小值的最小值,该值在后退地平线的长度中指数性地衰减。关键分析步骤是将我们的算法的一步差重现分解成算法错误和扰动错误。我们表明,在两个连续的后退地平线之间,扰动错误会随着两个相隔的时滞而急剧衰减,而由牛顿的方法决定的算法错误则会达到四级趋同。总体而言,这一方法引出了我们本地的指数趋同结果,即使美元值的适当值重新递减的地平线长度。Numerical 实验证实了我们的理论结论。