We develop a one-Newton-step-per-horizon, online, lag-$L$, model predictive control (MPC) algorithm for solving discrete-time, equality-constrained, nonlinear dynamic programs. Based on recent sensitivity analysis results for the target problems class, we prove that the approach exhibits a behavior that we call superconvergence; that is, the tracking error with respect to the full horizon solution is not only stable for successive horizon shifts, but also decreases with increasing shift order to a minimum value that decays exponentially in the length of the receding horizon. The key analytical step is the decomposition of the one-step error recursion of our algorithm into algorithmic error and perturbation error. We show that the perturbation error decays exponentially with the lag between two consecutive receding horizons, while~the algorithmic error, determined by Newton's method, achieves quadratic convergence instead. Overall this approach induces our local exponential convergence result in terms of the receding horizon length for suitable values of $L$. Numerical experiments validate our theoretical findings.


翻译:我们开发了一种用于解决离散时间、平等限制和非线性动态程序的模式预测(MPC)算法。根据最近对目标问题类的敏感度分析结果,我们证明该方法显示出一种我们称之为超趋同的行为;也就是说,全地平线解决方案的跟踪错误不仅对连续的地平线变化来说是稳定的,而且随着不断递增的变换顺序而降低到一个最小值的最小值,该值在后退地平线的长度中指数性地衰减。关键分析步骤是将我们的算法的一步差重现分解成算法错误和扰动错误。我们表明,在两个连续的后退地平线之间,扰动错误会随着两个相隔的时滞而急剧衰减,而由牛顿的方法决定的算法错误则会达到四级趋同。总体而言,这一方法引出了我们本地的指数趋同结果,即使美元值的适当值重新递减的地平线长度。Numerical 实验证实了我们的理论结论。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
15+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
15+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员