A set of colored graphs are compatible, if for every color $i$, the number of vertices of color $i$ is the same in every graph. A simultaneous embedding of $k$ compatibly colored graphs, each with $n$ vertices, consists of $k$ planar polyline drawings of these graphs such that the vertices of the same color are mapped to a common set of vertex locations. We prove that simultaneous embedding of $k\in o(\log \log n)$ colored planar graphs, each with $n$ vertices, can always be computed with a sublinear number of bends per edge. Specifically, we show an $O(\min\{c, n^{1-1/\gamma}\})$ upper bound on the number of bends per edge, where $\gamma = 2^{\lceil k/2 \rceil}$ and $c$ is the total number of colors. Our bound, which results from a better analysis of a previously known algorithm [Durocher and Mondal, SIAM J. Discrete Math., 32(4), 2018], improves the bound for $k$, as well as the bend complexity by a factor of $\sqrt{2}^{k}$. The algorithm can be generalized to obtain small universal point sets for colored graphs. We prove that $n\lceil c/b \rceil$ vertex locations, where $b\ge 1$, suffice to embed any set of compatibly colored $n$-vertex planar graphs with bend complexity $O(b)$, where $c$ is the number of colors.
翻译:一组彩色图表是兼容的, 如果每张彩色美元, 彩色平面图的数量在每一张图中都是相同的。 同时嵌入 $k$ 的彩色图, 每个都有 $n 的彩色图, 由这些图表的 $k$ 平面的多线图组成, 相同颜色的顶部被映射到一套通用的顶端位置。 我们证明, 同步嵌入 $k\ o( log\ log n n) 的彩色平面图, 每个有 $ $ 的彩色平面图, 总是可以同时嵌入 $k$ 的折面图。 具体地说, 我们显示的是每张弯的 $( min ⁇ c, n% 1 / g) 平面的 折面图, $ 美元平面图是 的 。 美元平面图中, 以 美元平面的 美元平面平面平面平面图进行更好的分析 。