For a finite collection of graphs ${\cal F}$, the ${\cal F}$-M-DELETION problem consists in, given a graph $G$ and an integer $k$, deciding whether there exists $S \subseteq V(G)$ with $|S| \leq k$ such that $G \setminus S$ does not contain any of the graphs in ${\cal F}$ as a minor. We are interested in the parameterized complexity of ${\cal F}$-M-DELETION when the parameter is the treewidth of $G$, denoted by $tw$. Our objective is to determine, for a fixed ${\cal F}$, the smallest function $f_{{\cal F}}$ such that {${\cal F}$-M-DELETION can be solved in time $f_{{\cal F}}(tw) \cdot n^{O(1)}$ on $n$-vertex graphs. We prove that $f_{{\cal F}}(tw) = 2^{2^{O(tw \cdot\log tw)}}$ for every collection ${\cal F}$, that $f_{{\cal F}}(tw) = 2^{O(tw \cdot\log tw)}$ if ${\cal F}$ contains a planar graph, and that $f_{{\cal F}}(tw) = 2^{O(tw)}$ if in addition the input graph $G$ is planar or embedded in a surface. We also consider the version of the problem where the graphs in ${\cal F}$ are forbidden as topological minors, called ${\cal F}$-TM-DELETION. We prove similar results for this problem, except that in the last two algorithms, instead of requiring ${\cal F}$ to contain a planar graph, we need it to contain a subcubic planar graph. This is the first of a series of articles on this topic.
翻译:对于一定量的图表收集 $[CalF] 美元, 美元- 美元- 美元- 美元- 美元- 美元(美元) 问题在于, 如果参数是 $G$的树际值, 和整数美元, 确定是否有美元S\ subseqeq V( G) 美元, $S\\\\ leq k美元( 美元) 美元( 美元/ 美元) 美元( 美元/ 美元), 美元- 美元- 美元- 美元( 美元) 的参数复杂性。 我们的目标是确定, 对于固定的 $S\ subseqseteq 美元( 美元) 美元( 美元) 美元- 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元- 美元( 美元) 美元( 美元) 美元- 美元( 美元) 美元( 美元/ 美元) 美元( 美元) 美元( 美元/ 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元) 美元( 美元) 美元) 美元( 美元) 美元) ( 美元) 美元) 美元( 美元) 美元( 美元) 美元(美元) 的最小) 美元) 的最小( 美元( 美元) 的數( 。