We give lower bounds on the communication complexity of graph problems in the multi-party blackboard model. In this model, the edges of an $n$-vertex input graph are partitioned among $k$ parties, who communicate solely by writing messages on a shared blackboard that is visible to every party. We show that any non-trivial graph problem on $n$-vertex graphs has blackboard communication complexity $\Omega(n)$ bits, even if the edges of the input graph are randomly assigned to the $k$ parties. We say that a graph problem is non-trivial if the output cannot be computed in a model where every party holds at most one edge and no communication is allowed. Our lower bound thus holds for essentially all key graph problems relevant to distributed computing, including Maximal Independent Set (MIS), Maximal Matching, ($\Delta+1$)-coloring, and Dominating Set. In many cases, e.g., MIS, Maximal Matching, and $(\Delta+1)$-coloring, our lower bounds are optimal, up to poly-logarithmic factors.
翻译:我们给出了多党黑板模型中图形问题的通信复杂性的较低界限。 在这个模型中, 一个 $n- verversex 输入图形的边缘在 $k$ 的政党之间被分割, 他们仅仅通过在每方都能看到的共享黑板上写信息进行沟通。 我们显示, $n- ververs 图形上的任何非三边图形问题都具有黑板通信复杂性 $\ Omega (n) 位元, 即使输入图形的边缘被随机指定给 $k$ 的政党 。 我们说, 如果无法在每方最多持有一个边缘且不允许进行沟通的模型中计算输出, 图形的边缘是非三边性的问题。 因此, 我们的下边框基本上包含所有与分布计算相关的关键图形问题, 包括最大独立设置(MIS)、 Maximal Matching ($\ Delta+1$) 彩色和 Domination Set 。 在许多案例中, 例如, MIS、 Maxal 匹配 和 $(\ Delta+1) $- crowning $, 我们的下框是最佳的顶端因素。