For a finite collection of graphs ${\cal F}$, the ${\cal F}$-M-DELETION problem consists in, given a graph $G$ and an integer $k$, decide whether there exists $S \subseteq V(G)$ with $|S| \leq k$ such that $G \setminus S$ does not contain any of the graphs in ${\cal F}$ as a minor. We are interested in the parameterized complexity of ${\cal F}$-M-DELETION when the parameter is the treewidth of $G$, denoted by $tw$. Our objective is to determine, for a fixed ${\cal F}$, the smallest function $f_{{\cal F}}$ such that ${\cal F}$-M-DELETION can be solved in time $f_{{\cal F}}(tw) \cdot n^{O(1)}$ on $n$-vertex graphs. We provide lower bounds under the ETH on $f_{{\cal F}}$ for several collections ${\cal F}$. We first prove that for any ${\cal F}$ containing connected graphs of size at least two, $f_{{\cal F}}(tw)= 2^{\Omega(tw)}$, even if the input graph $G$ is planar. Our main contribution consists of superexponential lower bounds for a number of collections ${\cal F}$, inspired by a reduction of Bonnet et al.~[IPEC, 2017]. In particular, we prove that when ${\cal F}$ contains a single connected graph $H$ that is either $P_5$ or is not a minor of the banner (that is, the graph consisting of a $C_4$ plus a pendent edge), then $f_{{\cal F}}(tw)= 2^{\Omega(tw \cdot \log tw)}$. This is the third of a series of articles on this topic, and the results given here together with other ones allow us, in particular, to provide a tight dichotomy on the complexity of $\{H\}$-M-DELETION, in terms of $H$, when $H$ is connected.
翻译:对于一定量的图表收集 $[C]$, $F$- M- DETION 问题在于, 如果参数是$的树际, 以G$计, 以整数美元计, 确定是否存在美元S\ subseteq V(G) 美元, 以$S\\\\ leq k$, 这样美元S& setminus S$ 并不包含任何以美元计价的图表。 当参数是$的树际, 美元是美元, 美元是美元, 美元-M- DETION 问题在于这个参数的参数复杂度, 以美元计价, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 最小的功能, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 。