Recently, we have struck the balance between the information freshness, in terms of age of information (AoI), experienced by users and energy consumed by sensors, by appropriately activating sensors to update their current status in caching enabled Internet of Things (IoT) networks [1]. To solve this problem, we cast the corresponding status update procedure as a continuing Markov Decision Process (MDP) (i.e., without termination states), where the number of state-action pairs increases exponentially with respect to the number of considered sensors and users. Moreover, to circumvent the curse of dimensionality, we have established a methodology for designing deep reinforcement learning (DRL) algorithms to maximize (resp. minimize) the average reward (resp. cost), by integrating R-learning, a tabular reinforcement learning (RL) algorithm tailored for maximizing the long-term average reward, and traditional DRL algorithms, initially developed to optimize the discounted long-term cumulative reward rather than the average one. In this technical report, we would present detailed discussions on the technical contributions of this methodology.


翻译:最近,我们通过适当激活传感器以更新其当前状态,即能够缓存的Tings(IoT)网络网络网络([1]),在用户所经历的信息年龄(AoI)和传感器所消耗的能量方面实现了信息新颖性(AoI)之间的平衡。为了解决这个问题,我们将相应的更新状态程序作为持续进行的Markov决策过程(即不终止状态)(即,不终止状态)来实施。 在这种进程中,与考虑过的传感器和用户的数量相比,州-行动对口的数量成倍增长。此外,为避免对维度的诅咒,我们制定了一种设计深度强化学习(DRL)算法的方法,以最大限度地(最大限度地减少)平均奖励(成本)的方法,通过整合R-学习、为尽量扩大长期平均奖励而设计的表格强化学习算法以及传统的DRL算法,最初是为了优化折扣长期累积奖励而不是平均累积奖励。我们将在这份技术报告中详细讨论这一方法的技术贡献。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
DARPA可解释人工智能
专知会员服务
130+阅读 · 2020年12月22日
专知会员服务
17+阅读 · 2020年12月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关VIP内容
DARPA可解释人工智能
专知会员服务
130+阅读 · 2020年12月22日
专知会员服务
17+阅读 · 2020年12月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员