This paper develops a Multiset Rewriting language with explicit time for specifying and analyzing Time-Sensitive Distributed Systems (TSDS). Goals are often specified using explicit time constraints. A good trace is an infinite trace in which goals are perpetually satisfied, in spite of a possible environment interference. In our previous work (FORMATS 2016) we discussed two desirable properties of TSDSes, realizability (there exists a good trace) and survivability (where, in addition, all admissible traces are good). Here we consider two further properties, recoverability (all compliant traces do not reach points-of-no-return) and reliability (system can always continue functioning using a good trace). Following our previous work (FORMATS 2016), we focus on a class of systems called Progressing Timed Systems (PTS), where intuitively only a finite number of actions can be carried out in a bounded time period. We prove that for this class of systems the properties of recoverability and reliability coincide and are PSPACE-complete. Furthermore, if we impose a bound on time (as in bounded model-checking), we show that for PTS, the reliability property is in the $\Delta_2^p$ class of the polynomial hierarchy, a subclass of PSPACE. We also show that bounded survivability is both NP-hard and coNP-hard.
翻译:本文开发了一个多功能重写语言, 明确指定和分析具有时间敏感性的分布系统( TSDS ) 。 目标通常使用明确的时间限制来指定 。 良好的跟踪是一个无限的痕迹, 尽管环境可能受到干扰, 目标仍然可以永远实现 。 在先前的工作( FORMATS 2016) 中, 我们讨论了TSDS的两种可取属性, 即可变性( 存在良好的跟踪) 和可生存性( 此外, 所有可受理的痕迹都很好 ) 。 我们在这里考虑另外两个属性, 即可恢复性( 所有符合要求的痕迹都不能到达不归点) 和可靠性( 系统总是能够继续使用良好的跟踪来运作 ) 。 在我们之前的工作( FORMATS 2016) 之后, 我们关注了被称为进步计时制系统( PTSS) 的一类系统( PTS), 其中只有有限数量的行动可以在受约束的时间内进行。 我们证明对于这类系统来说, 恢复性和可靠性是PACE- NPNPER 的固定性。