We consider the problem of inferring the underlying graph topology from smooth graph signals in a novel but practical scenario where data are located in distributed clients and are privacy-sensitive. The main difficulty of this task lies in how to utilize the potentially heterogeneous data of all isolated clients under privacy constraints. Towards this end, we propose a framework where personalized graphs for local clients as well as a consensus graph are jointly learned. The personalized graphs match local data distributions, thereby mitigating data heterogeneity, while the consensus graph captures the global information. We next devise a tailored algorithm to solve the induced problem without violating privacy constraints, i.e., all private data are processed locally. To further enhance privacy protection, we introduce differential privacy (DP) into the proposed algorithm to resist privacy attacks when transmitting model updates. Theoretically, we establish provable convergence analyses for the proposed algorithms, including that with DP. Finally, extensive experiments on both synthetic and real-world data are carried out to validate the proposed framework. Experimental results illustrate that our approach can learn graphs effectively in the target scenario.
翻译:暂无翻译