In this work, we apply the Stochastic Grid Bundling Method (SGBM) to numerically solve backward stochastic differential equations. The SGBM algorithm is based on conditional expectations approximation by means of bundling of Monte Carlo sample paths and a local regress-later regression within each bundle. The basic algorithm for solving backward stochastic differential equations will be introduced and an upper error bound is established for the local regression. A full error analysis is also conducted for the explicit version of our algorithm and numerical experiments are performed to demonstrate various properties of our algorithm.


翻译:在这项工作中,我们应用了Stochastic 网格捆绑法(SGBM) 来从数字上解析后向随机差分方程式。 SGBM 算法基于有条件的预期近似值, 方法是将蒙特卡洛的样本路径捆绑在一起, 在每个捆包中进行局部递后后后回归回归回归回归。 将引入用于解决后向随机差分方程式的基本算法, 并为本地回归设定一个上限误差约束 。 还对我们的算法的清晰版本进行全面错误分析, 并进行数字实验, 以显示我们算法的各种特性 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
6+阅读 · 2018年10月3日
Learning to Importance Sample in Primary Sample Space
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
6+阅读 · 2019年4月8日
Arxiv
6+阅读 · 2018年10月3日
Learning to Importance Sample in Primary Sample Space
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
4+阅读 · 2018年2月19日
Top
微信扫码咨询专知VIP会员