The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. Machine-learning potentials can achieve the accuracy of first-principles simulations while allowing to reach well beyond their simulation time and length scales at a fraction of the cost. In this paper, we explain how to apply the GK approach to the recent class of message-passing machine-learning potentials, which iteratively consider semi-local interactions beyond the initial interaction cutoff. We derive an adapted heat flux formulation that can be implemented using automatic differentiation without compromising computational efficiency. The approach is demonstrated and validated by calculating the thermal conductivity of zirconium dioxide across temperatures.
翻译:格林-库博方法(Green-Kubo, GK)是材料热传输模拟的一个严格框架。但是,它需要对势能面进行精确描述并收敛统计数据。机器学习势能可以在以极小的成本达到第一原理模拟的精度同时允许我们超越其模拟时间和长度尺度。本文介绍了如何将GK方法应用于最新的消息传递机器学习势,该类势在初步相互作用截断以外迭代考虑半局部相互作用。我们推导出一个适应热通量的公式,可以使用自动微分实现而不影响计算效率。该方法通过计算二氧化锆的热导率在不同温度下得到了验证。