Simultaneous localization and mapping (SLAM) remains challenging for a number of downstream applications, such as visual robot navigation, because of rapid turns, featureless walls, and poor camera quality. We introduce the Differentiable SLAM Network (SLAM-net) along with a navigation architecture to enable planar robot navigation in previously unseen indoor environments. SLAM-net encodes a particle filter based SLAM algorithm in a differentiable computation graph, and learns task-oriented neural network components by backpropagating through the SLAM algorithm. Because it can optimize all model components jointly for the end-objective, SLAM-net learns to be robust in challenging conditions. We run experiments in the Habitat platform with different real-world RGB and RGB-D datasets. SLAM-net significantly outperforms the widely adapted ORB-SLAM in noisy conditions. Our navigation architecture with SLAM-net improves the state-of-the-art for the Habitat Challenge 2020 PointNav task by a large margin (37% to 64% success). Project website: http://sites.google.com/view/slamnet
翻译:同时的本地化和绘图(SLAM)对于一些下游应用来说仍然具有挑战性,例如视觉机器人导航,原因是快速旋转、无特色的墙壁和摄像质量差。我们引入了可区别的SLAM网络(SLAM-net)以及导航架构,以便在以前不为人知的室内环境中进行平板机器人导航。SLAM-net将基于粒子过滤器的SLAM算法编码成一个不同的计算图,并通过SLAM算法进行回映,学习以任务为导向的神经网络组件。因为SLAM-net能够优化最终目标的所有模型组件,因此,SLAM-net学会在具有挑战性的条件下变得强大。我们在生境平台上与不同的真实世界RGB和RGB-D数据集进行实验。SLAM-net在噪音条件下大大超越了经过广泛调整的ORB-SAM。我们使用SLM-net的导航架构将2020年人居挑战点-Nav号的状态改进了大幅度(37%至64%的成功程度)。项目网站:http://sitesiteset.gogle.com/view/slamnet/slamnet