As a fundamental problem for Artificial Intelligence, multi-agent system (MAS) is making rapid progress, mainly driven by multi-agent reinforcement learning (MARL) techniques. However, previous MARL methods largely focused on grid-world like or game environments; MAS in visually rich environments has remained less explored. To narrow this gap and emphasize the crucial role of perception in MAS, we propose a large-scale 3D dataset, CollaVN, for multi-agent visual navigation (MAVN). In CollaVN, multiple agents are entailed to cooperatively navigate across photo-realistic environments to reach target locations. Diverse MAVN variants are explored to make our problem more general. Moreover, a memory-augmented communication framework is proposed. Each agent is equipped with a private, external memory to persistently store communication information. This allows agents to make better use of their past communication information, enabling more efficient collaboration and robust long-term planning. In our experiments, several baselines and evaluation metrics are designed. We also empirically verify the efficacy of our proposed MARL approach across different MAVN task settings.


翻译:作为人工智能的一个根本问题,多试剂系统(MAS)正在取得快速进展,这主要是由多剂强化学习(MARL)技术推动的。然而,以往的MARL方法主要侧重于网状世界或游戏环境;在视觉丰富的环境中,MAS仍然很少探索;为了缩小这一差距,强调认识在MAS中的关键作用,我们提议为多剂视觉导航(MAVN)建立一个大型的3D数据集(ColaVN),供多剂视觉导航(MAVN)使用。在CollaVN中,需要多种剂来合作地跨光学现实环境到达目标地点。我们探索了多种MAVN变体,以使我们的问题更加普遍化。此外,还提议了一个记忆强化的通信框架。每个代理器都配备了私人外部记忆,以持续存储通信信息。这样可以使代理人更好地利用其过去的通信信息,从而能够进行更有效的合作和强有力的长期规划。在我们的实验中,设计了若干基线和评价指标。我们还从经验上核查了我们提议的MARL方法在不同MAVN任务环境中的功效。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年10月15日
Arxiv
3+阅读 · 2018年3月22日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员