This research concerns the estimation of latent linear or polychoric correlations from fuzzy frequency tables. Fuzzy counts are of particular interest to many disciplines including social and behavioral sciences, and are especially relevant when observed data are classified using fuzzy categories - as for socio-economic studies, clinical evaluations, content analysis, inter-rater reliability analysis - or when imprecise observations are classified into either precise or imprecise categories - as for the analysis of ratings data or fuzzy coded variables. In these cases, the space of count matrices is no longer defined over naturals and, consequently, the polychoric estimator cannot be used to accurately estimate latent linear correlations. The aim of this contribution is twofold. First, we illustrate a computational procedure based on generalized natural numbers for computing fuzzy frequencies. Second, we reformulate the problem of estimating latent linear correlations from fuzzy counts in the context of Expectation-Maximization based maximum likelihood estimation. A simulation study and two applications are used to investigate the characteristics of the proposed method. Overall, the results show that the fuzzy EM-based polychoric estimator is more efficient to deal with imprecise count data as opposed to standard polychoric estimators that may be used in this context.
翻译:这项研究涉及对来自模糊频率表的潜伏线性或多分系关系的估计。模糊计数对许多学科,包括社会和行为科学特别有意义,当观测数据使用模糊分类分类,如社会经济研究、临床评价、内容分析、跨鼠间可靠性分析,或不精确的观测分为精确或不精确的类别,如分析评级数据或模糊编码变量,模糊计数矩阵的空间不再局限于自然,因此无法使用多分数估计潜伏线性关系。这一贡献的目的有两个。首先,我们说明一种基于计算模糊频率的通用自然数字的计算程序。第二,我们重新提出在预测-最大可能性估计基础上估算的模糊计数中估算潜在线性相关性的问题。在这些情况下,模拟研究和两种应用用于调查拟议方法的特性。总体而言,结果显示,在计算这一多频频率时,基于烟雾的混合测深仪与多频测算器之间,使用这一数据时可能更有效率。