Based on the canonical correlation analysis we derive series representations of the probability density function (PDF) and the cumulative distribution function (CDF) of the information density of arbitrary Gaussian random vectors. Using the series representations we give closed-form expressions of the PDF and CDF for important special cases and derive tight approximations for the general case. Furthermore, we discuss the (in)validity of Gaussian approximations of the information density.
翻译:根据卡通相关分析,我们得出了任意高斯随机矢量信息密度概率密度函数(PDF)和累积分布函数(CDF)的系列表示。我们用序列表示方式对重要特殊情况给出PDF和CDF的封闭式表达方式,并对一般情况得出近似值。此外,我们讨论了高斯近似值(内)对信息密度的有效性。