The sorption curve is an essential feature for the modelling of heat and mass transfer in porous building materials. Several models have been proposed in the literature to represent the amount of moisture content in the material according to the water activity (or capillary pressure) level. These models are based on analytical expressions and few parameters that need to be estimated by inverse analysis. This article investigates the reliability of eight models through the accuracy of the estimated parameters. For this, experimental data for a wood fibre material are generated with special attention to the stop criterion to capture long time kinetic constants. Among five sets of measurements, the best estimate is computed. The reliability of the models is then discussed. After proving the theoretical identifiability of the unknown parameters for each model, the primary identifiability is analysed. It evaluates whether the parameters influence on the model output is sufficient to proceed the parameter estimation with accuracy. For this, a continuous derivative-based approach is adopted. Seven models have a low primary identifiability for at least one parameter. Indeed, when estimating the unknown parameters using the experimental observations, the parameters with low primary identifiability exhibit large uncertainties. Finally, an Approximation Bayesian Computation algorithm is used to simultaneously select the best model and estimate the parameters that best represent the experimental data. The thermodynamic and \textsc{Feng}--\textsc{Xing} models, together with a proposed model in this work, were the best ones selected by this algorithm.


翻译:吸附曲线是模拟多孔建筑材料的热量和质量传输的基本特征。 文献中提出了几种模型, 以根据水活动( 或毛细压力) 水平代表材料中的湿度含量。 这些模型基于分析表达式和很少需要反分析来估计的参数。 本条通过估计参数的准确性来调查八个模型的可靠性。 为此, 木材纤维材料的实验数据生成时特别注意停止标准, 以捕捉长期动能常数。 在5套测量中, 计算出最佳估计值。 然后讨论模型的可靠性。 在证明每种模型未知参数理论上的可识别性之后, 分析基本可识别性。 它评估模型输出的参数是否足以精确地进行参数估计。 为此, 采用了持续的衍生物法方法。 7个模型的初级可识别性较低, 至少有一个参数。 事实上, 在使用实验观察来估算未知参数时, 低度基本可识别性参数的参数展示了大不确定性模型。 最后, 使用最佳可识别性参数来同时评估模型。 F, 使用最佳的实验性参数 和最佳分析法 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月1日
Higher Order Targeted Maximum Likelihood Estimation
Arxiv
0+阅读 · 2021年6月30日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员