Electrochemical impedance spectroscopy (EIS) is a widely used tool for characterization of fuel cells and other electrochemical conversion systems. When applied to the on-line monitoring in the context of in-field applications, the disturbances, drifts and sensor noise may cause severe distortions in the evaluated spectra, especially in the low-frequency part. Failure to ignore the random effects can result in misinterpreted spectra and, consequently, in misleading diagnostic reasoning. This fact has not been often addressed in the research so far. In this paper, we propose an approach to the quantification of the spectral uncertainty, which relies on evaluating the uncertainty of the equivalent circuit model (ECM). We apply the computationally efficient variational Bayes (VB) method and compare the quality of the results with those obtained with the Markov chain Monte Carlo (MCMC) algorithm. Namely, MCMC algorithm returns accurate distributions of the estimated model parameters, while VB approach provides the approximate distributions. By using simulated and real data we show that approximate results provided by VB approach, although slightly over-optimistic, are still close to the more realistic MCMC estimates. A great advantage of the VB method for online monitoring is low computational load, which is several orders of magnitude lower compared to MCMC. The performance of VB algorithm is demonstrated on a case of ECM parameters estimation in a 6 cell solid oxide fuel cell (SOFC) stack. The complete numerical implementation for recreating the results can be found at https://repo.ijs.si/lznidaric/variational-bayes-supplementary-material.
翻译:电化学阻力分光镜(EIS)是一种广泛使用的燃料电池和其他电化学转换系统定性工具。当应用到现场应用的在线监测时,扰动、漂移和传感器噪音可能会对评估的光谱造成严重扭曲,特别是在低频部分。不忽视随机效应可能导致误解光谱,从而导致误导性诊断推理。迄今为止,研究中通常没有涉及这一事实。在本文中,我们提出对光谱不确定性进行量化的方法,该方法依赖于对等电路模型(ECM)的不确定性进行评估。我们采用计算效率高的变频(VB)方法,并将结果的质量与利用Markov链 Monte Carlo(MC)算法获得的结果进行对比。也就是说,MC算法将估计模型参数的准确分布进行准确分析,而VB方法则提供大致分布。我们通过使用模拟和真实数据,发现VB方法提供的近似结果,尽管略过乐观,但仍接近于更现实的电路模型模型模型(EMMC)的不确定性模型(VMC-MC)的计算效率方法与Markoval-C公司测算数的数值相比,VS-CFI的数值的数值的数值是比较低的数值。VCMCFI的数值的数值的数值的数值的数值分析的优势是一种比较。VSU值的数值的数值的数值的数值的数值的数值的数值。VSU。V-CFA的数值的数值的数值的数值比的数值的数值的数值的数值的数值是用于。V-CFI的数值的数值的数值的数值的数值的数值的数值的数值是用来在一种较小的数值。