Electrochemical impedance spectroscopy (EIS) is a widely used tool for characterization of fuel cells and other electrochemical conversion systems. When applied to the on-line monitoring in the context of in-field applications, the disturbances, drifts and sensor noise may cause severe distortions in the evaluated spectra, especially in the low-frequency part. Failure to ignore the random effects can result in misinterpreted spectra and, consequently, in misleading diagnostic reasoning. This fact has not been often addressed in the research so far. In this paper, we propose an approach to the quantification of the spectral uncertainty, which relies on evaluating the uncertainty of the equivalent circuit model (ECM). We apply the computationally efficient variational Bayes (VB) method and compare the quality of the results with those obtained with the Markov chain Monte Carlo (MCMC) algorithm. Namely, MCMC algorithm returns accurate distributions of the estimated model parameters, while VB approach provides the approximate distributions. By using simulated and real data we show that approximate results provided by VB approach, although slightly over-optimistic, are still close to the more realistic MCMC estimates. A great advantage of the VB method for online monitoring is low computational load, which is several orders of magnitude lower compared to MCMC. The performance of VB algorithm is demonstrated on a case of ECM parameters estimation in a 6 cell solid oxide fuel cell (SOFC) stack. The complete numerical implementation for recreating the results can be found at https://repo.ijs.si/lznidaric/variational-bayes-supplementary-material.


翻译:电化学阻力分光镜(EIS)是一种广泛使用的燃料电池和其他电化学转换系统定性工具。当应用到现场应用的在线监测时,扰动、漂移和传感器噪音可能会对评估的光谱造成严重扭曲,特别是在低频部分。不忽视随机效应可能导致误解光谱,从而导致误导性诊断推理。迄今为止,研究中通常没有涉及这一事实。在本文中,我们提出对光谱不确定性进行量化的方法,该方法依赖于对等电路模型(ECM)的不确定性进行评估。我们采用计算效率高的变频(VB)方法,并将结果的质量与利用Markov链 Monte Carlo(MC)算法获得的结果进行对比。也就是说,MC算法将估计模型参数的准确分布进行准确分析,而VB方法则提供大致分布。我们通过使用模拟和真实数据,发现VB方法提供的近似结果,尽管略过乐观,但仍接近于更现实的电路模型模型模型(EMMC)的不确定性模型(VMC-MC)的计算效率方法与Markoval-C公司测算数的数值相比,VS-CFI的数值的数值的数值是比较低的数值。VCMCFI的数值的数值的数值的数值的数值分析的优势是一种比较。VSU值的数值的数值的数值的数值的数值的数值的数值。VSU。V-CFA的数值的数值的数值的数值比的数值的数值的数值的数值的数值是用于。V-CFI的数值的数值的数值的数值的数值的数值的数值的数值是用来在一种较小的数值。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员