This paper considers an endogenous binary response model with many weak instruments. We in the current paper employ a control function approach and a regularization scheme to obtain better estimation results for the endogenous binary response model in the presence of many weak instruments. Two consistent and asymptotically normally distributed estimators are provided, each of which is called a regularized conditional maximum likelihood estimator (RCMLE) and a regularized nonlinear least square estimator (RNLSE) respectively. Monte Carlo simulations show that the proposed estimators outperform the existing estimators when many weak instruments are present. We apply our estimation method to study the effect of family income on college completion.
翻译:本文考虑了一种内生二元反应模式,其中有许多薄弱工具。我们在本文件中采用了一种控制功能办法和一个正规化计划,以便在许多薄弱工具存在的情况下,对内生二元反应模式获得更好的估计结果。提供了两种一致和零散分布的估计数字,其中每一种都分别称为固定的有条件最大可能性估计数字(RCMLE)和固定的非线性最低平方估计数字(RNLSE)。蒙特卡洛模拟显示,在存在许多薄弱工具时,拟议的估计数字比现有估计数字要好。我们运用我们的估计方法来研究家庭收入对完成大学学业的影响。