Neural abstractive summarization has been studied in many pieces of literature and achieves great success with the aid of large corpora. However, when encountering novel tasks, one may not always benefit from transfer learning due to the domain shifting problem, and overfitting could happen without adequate labeled examples. Furthermore, the annotations of abstractive summarization are costly, which often demand domain knowledge to ensure the ground-truth quality. Thus, there are growing appeals for Low-Resource Abstractive Summarization, which aims to leverage past experience to improve the performance with limited labeled examples of target corpus. In this paper, we propose to utilize two knowledge-rich sources to tackle this problem, which are large pre-trained models and diverse existing corpora. The former can provide the primary ability to tackle summarization tasks; the latter can help discover common syntactic or semantic information to improve the generalization ability. We conduct extensive experiments on various summarization corpora with different writing styles and forms. The results demonstrate that our approach achieves the state-of-the-art on 6 corpora in low-resource scenarios, with only 0.7% of trainable parameters compared to previous work.
翻译:在许多文学著作中,对神经抽象总结进行了研究,在大型公司的帮助下取得了巨大成功。然而,在遇到新的任务时,人们可能并不总是从由于领域变化问题而产生的转移学习中受益,而且如果没有贴上适当标签的例子,就有可能发生过度装配。此外,抽象总结说明成本高昂,往往需要领域知识,以确保地面真相质量。因此,人们越来越多地呼吁利用过去的经验,利用有限标记的目标体实例改进业绩。在本文件中,我们提议利用两个知识丰富的来源来解决这一问题,它们是大型的预先培训模式和多种现有的公司。前者可以提供处理合成任务的主要能力;后者可以帮助发现共同的合成或语义信息,以提高一般化能力。我们用不同写法和形式对各种合成公司进行广泛的实验。结果显示,我们的方法在低资源情景中实现了6个公司的现状,这是大型的预培训模式和多样化的现有公司。前者可以提供处理合成任务的主要能力;后者有助于发现共同的合成或语义信息,以提高一般化能力。我们用不同的写法和形式对各种组合进行了广泛的实验。结果表明,我们的方法在低资源情景下,只有0.7 %的训练参数比以前的工作。