In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing -- our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-$\beta$ Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task particularly for autonomous navigation applications, and hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.
翻译:在本文中,我们引入了一个新的计算机愿景任务,即夜间脱光和光亮增强。这一任务旨在共同开展脱光和光亮增强工作。我们的任务与夜间脱光工作有根本的不同。我们的目标是共同进行脱光和增强场面,而夜间脱光工作的目的是在夜间环境下进行脱光工作。为了便利对这项任务的进一步研究,我们发布了一个新的基准数据集,即 " 隔夜-$\beta$夜值 ",其中包括来自2061年场景和2061年地面真相图像的4122张夜光化图像。此外,我们还提出了一个新的网络,即 " NDENET(夜间脱光增强网络) " (Nighttime Dehaze-Engancement Network),这个网络与夜间脱光和低光增强工作的目的是在夜间环境下进行脱光工作,并实现0.8962和26.25的SSIM(SSIM)和PSNR(26.25)。我们还将我们的网络与其他基准网络进行了比较,以显示我们的方法的有效性。我们认为,夜间脱光增强工作是一项重要的任务,特别是用于自主导航应用程序应用,希望我们的工作将进入公开的边界。