Alignment between image and text has shown promising improvements on patch-level pre-trained document image models. However, investigating more effective or finer-grained alignment techniques during pre-training requires a large amount of computation cost and time. Thus, a question naturally arises: Could we fine-tune the pre-trained models adaptive to downstream tasks with alignment objectives and achieve comparable or better performance? In this paper, we propose a new model architecture with alignment-enriched tuning (dubbed AETNet) upon pre-trained document image models, to adapt downstream tasks with the joint task-specific supervised and alignment-aware contrastive objective. Specifically, we introduce an extra visual transformer as the alignment-ware image encoder and an extra text transformer as the alignment-ware text encoder before multimodal fusion. We consider alignment in the following three aspects: 1) document-level alignment by leveraging the cross-modal and intra-modal contrastive loss; 2) global-local alignment for modeling localized and structural information in document images; and 3) local-level alignment for more accurate patch-level information. Experiments on various downstream tasks show that AETNet can achieve state-of-the-art performance on various downstream tasks. Notably, AETNet consistently outperforms state-of-the-art pre-trained models, such as LayoutLMv3 with fine-tuning techniques, on three different downstream tasks.


翻译:图像和文本之间的对齐显示,在经过事先培训的补丁级文件图像模型上,图像和文本之间的对齐显示出了大有希望的改进。然而,在培训前调查更有效或更精细的对齐技术需要大量的计算成本和时间。因此,自然会出现一个问题:我们能否将经过预先培训的模型与下游任务相适应,使其与调整目标相适应,并实现可比较或更好的性能?在本文件中,我们提议一个新的模型结构,在经过培训之前,在经过培训的文件图像模型上,采用经过调整的强化调整(dubbbbed AETNet),以适应下游任务,与联合任务具体监管和对齐的对比目标相适应下游任务。具体而言,我们引入了额外的视觉变异器,作为校准软件图像编码器和额外的文本变异器,作为多式联运之前的校准软件编码器。 我们考虑在以下三个方面保持一致:(1) 通过利用跨模式和内部对比损失,使文件图像中的地方调整(dbbbed AETNet)对本地信息进行建模;(3) 地方一级调整,以更精确的对齐信息。在各种下游任务上,对齐实验显示,AET网络前的高级任务可以持续地,在进行升级的升级的升级。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员