Claim detection and verification are crucial for news understanding and have emerged as promising technologies for mitigating misinformation and disinformation in the news. However, most existing work has focused on claim sentence analysis while overlooking additional crucial attributes (e.g., the claimer and the main object associated with the claim). In this work, we present NewsClaims, a new benchmark for attribute-aware claim detection in the news domain. We extend the claim detection problem to include extraction of additional attributes related to each claim and release 889 claims annotated over 143 news articles. NewsClaims aims to benchmark claim detection systems in emerging scenarios, comprising unseen topics with little or no training data. To this end, we see that zero-shot and prompt-based baselines show promising performance on this benchmark, while still considerably behind human performance.
翻译:查明和核实索赔要求对于了解新闻至关重要,并已成为减少新闻错误和虚假信息有希望的技术,然而,大多数现有工作的重点是索赔判决分析,而忽略了其他关键属性(例如索赔者以及与索赔有关的主要对象);在这项工作中,我们介绍了《NewsResources》,这是在新闻领域发现属性意识索赔要求的新基准;我们扩大了索赔要求探测问题的范围,包括提取与每项索赔要求有关的其他属性,并在143篇新闻文章中发布了889项附加说明的索赔要求;《NewsResources》旨在为新情况中的索偿探测系统制定基准,其中包括很少或根本没有培训数据的隐蔽主题;为此,我们看到,零率和基于即时的基准显示这一基准有良好的业绩,但仍远远落后于人类业绩。