In hands-free communication system, the coupling between loudspeaker and microphone generates echo signal, which can severely influence the quality of communication. Meanwhile, various types of noise in communication environments further reduce speech quality and intelligibility. It is difficult to extract the near-end signal from the microphone signal within one step, especially in low signal-to-noise ratio scenarios. In this paper, we propose a deep complex network approach to address this issue. Specially, we decompose the stereophonic acoustic echo cancellation into two stages, including linear stereophonic acoustic echo cancellation module and residual echo suppression module, where both modules are based on deep learning architectures. A multi-frame filtering strategy is introduced to benefit the estimation of linear echo by capturing more inter-frame information. Moreover, we decouple the complex spectral mapping into magnitude estimation and complex spectrum refinement. Experimental results demonstrate that our proposed approach achieves stage-of-the-art performance over previous advanced algorithms under various conditions.


翻译:在无手通信系统中,扩音器和麦克风之间的连接产生回声信号,这会严重影响通信质量。与此同时,通信环境中的各类噪音进一步降低了语音质量和智能度。很难在一步内从麦克风信号中提取近端信号,特别是在低信号对噪音比率的假设中。在本文件中,我们提出了解决这一问题的深层复杂网络方法。特别是,我们将声响声取消分为两个阶段,包括线性声响取消模块和剩余回声抑制模块,这两个模块都以深层学习结构为基础。采用了多框架过滤战略,通过获取更多框架间信息,对线性回声进行估计。此外,我们把复杂的光谱绘图分为数量估计和复杂频谱改进。实验结果表明,我们所提议的方法在不同条件下取得了前先进算法的阶段性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
0+阅读 · 2022年6月22日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员