In this paper, we study the problem of Gaussian process (GP) bandits under relaxed optimization criteria stating that any function value above a certain threshold is "good enough". On the theoretical side, we study various {\em lenient regret} notions in which all near-optimal actions incur zero penalty, and provide upper bounds on the lenient regret for GP-UCB and an elimination algorithm, circumventing the usual $O(\sqrt{T})$ term (with time horizon $T$) resulting from zooming extremely close towards the function maximum. In addition, we complement these upper bounds with algorithm-independent lower bounds. On the practical side, we consider the problem of finding a single "good action" according to a known pre-specified threshold, and introduce several good-action identification algorithms that exploit knowledge of the threshold. We experimentally find that such algorithms can often find a good action faster than standard optimization-based approaches.


翻译:在本文中,我们研究了高山进程(GP)匪徒的问题,根据宽松的优化标准,指出任何超过某一阈值的功能值都“足够好 ” 。 在理论方面,我们研究了所有接近最佳的行动都受到零处罚的各种概念,并为GP-UCB和清除算法提供了宽度遗憾的上限,绕过通常的美元(以时间范围计)条件(用时间范围计$T$),因为放大到功能上限非常近。此外,我们用依赖算法的下限来补充这些上限。 在实际方面,我们考虑根据已知的预设阈值寻找单一“良好行动”的问题,并引入几种利用阈值知识的良好行动识别算法。我们实验性地发现,这种算法往往能找到比标准的优化方法更快的好行动。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
集成学习入门
论智
8+阅读 · 2018年3月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月14日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
集成学习入门
论智
8+阅读 · 2018年3月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月14日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员